Novel Mixed Tris-complexes of Cobalt(III) with α- and β-Amino-acids: Isolation, Adsorption Chromatography, and Absorption Spectra

By NENAD M. KOSTIĆ and SVETOZAR R. NIKETIĆ*

(Institute of Chemistry, Faculty of Science, University of Beograd, Studentski trg 16, P.O. Box 550, YU-11001 Beograd, Yugoslavia)

Summary All eight possible geometrical isomers of the mixed cobalt(III) complexes containing 5-membered glycinato- and 6-membered β -alaninato-metal chelate rings, $[Co(\beta-Ala)_x(Gly)_{3-x}]$ (I; x = 1 or 2), have been isolated by adsorption chromatography on a cation exchanger in the H⁺-form owing to the difference in basicities of carbonyl groups hydrogen-bonded to the resin; surprising dissimilarities in absorption spectra of meridional isomers arise from the differences in Co-O π -interactions influenced by the conformations of the 6-membered rings.

WE report the synthesis, separation, and characterisation of all eight theoretically predicted geometrical isomers of the tris(bidentate) complexes of cobalt(III) containing both 5-membered glycinato (Gly) and 6-membered β -alaninato (β -Ala) metal chelate rings, [Co(β -Ala)_x(Gly)_{3-x}] (I; x=1 or 2) (Figure 1), representing the first example of mixed tris(amino-acidato) complexes of any metal in which the chelates differ solely in the ring size.

FIGURE 1. Possible geometrical isomers of (I; x = 1 or 2). The heavy line indicates a ligand different from the other two; when x = 1 it is β -Ala, when x = 2 it is Gly.

Syntheses, which are operative under a wide range of experimental conditions (see Scheme), involve treatment of carbonatobis(amino-acidato)cobaltate(III)¹ with the corresponding other amino-acid or its anion. Interestingly, from the single starting isomer twelve different species, *i.e.* all isomers of (I; x = 0, 1, 2, or 3), were isolated.

GlyH = Glycine β -AlaH = β -Alanine

SCHEME

The mixture of products was first chromatographed on a column of Dowex 50W-X8 (200-400 mesh) in Na⁺-form with water as eluent utilizing the ion exclusion phenomenon.² By-products and the unchanged starting material were eluted first, followed by two bands, violet and red, consisting of meridional (*mer*) and facial (*fac*) isomers of (I; x = 0, 1, 2, or 3), respectively. The two solutions were then separately chromatographed on columns of the same cationite but this time in the H⁺-form. Different complexes were eluted with water in the order of increasing x (from 0 to 3). Three *mer* isomers (see Figure 1) were separated for each of the two mixed complexes (I; x = 1 or 2).[†] Pure complexes[‡] were obtained by evaporating the corresponding fractions to dryness *in vacuo*.

Complete separation of these neutral complexes on the H⁺-cationite is feasible because of the difference in hydrogenbonding capability of C=O groups in Gly and β -Ala chelate rings.§

Characteristic differences in the visible electronic spectra of *fac* and *mer* configurations of complexes of tris(aminoacidato)cobalt(III) with α^{-3} or β -amino-acids⁴ are also retained in the mixed complexes (I; x = 1 or 2). However, the first spin-allowed band shows a quite different splitting pattern (Figures 2 and 3) in the three *mer* forms in both

FIGURE 2. Absorption spectra of all isomers of (I; x = 1). The *mer* isomers are numbered in the elution order.

series of mixed complexes, although they all have the same (C_{2e}) microsymmetry of the ligand field. We attribute these differences to the effects of Co-O π -interactions. Overlap between metal *t*- and oxygen *p*-orbitals depends on the conformation of the flexible 6-membered β -Ala ring, and may be quite different from that of the essentially planar 5-membered Gly ring. Therefore, in *mer* isomers of the mixed complexes (I; x = 1 or 2) the fact that each of the three intrinsically non-equivalent oxygen donors are part of a chelate ring different from the other two will

FIGURE 3. Absorption spectra of all isomers of (I; x = 2). The *mer* isomers are numbered in the elution order.

† When a combined solution of all *fac* and all *mer* isomers of (I; x = 0, 1, 2, or 3) was chromatographed on the H⁺-cationite, bypassing the prior separation on the Na⁺-column, the elution followed the order of increasing x, the *fac* isomer being eluted after *mer* isomer(s) within each value of x. However, this procedure is prohibitively long and tedious for preparative application.

‡ Satisfactory elemental and amino-acid analyses were obtained for all compounds.

 β Full details of the pertinent electronic and steric factors, which enhance the basicity of β -Ala C=O group over that of Gly, will be given in a later publication.

result in slight but discernible changes in the energies of the low symmetry components of the ${}^{1}T_{1g}$ level, accounting for the observed patterns in electronic spectra (Figures 2 and 3).

N.M.K. is indebted to Professor M. B. Celap for permission to work in the laboratory of the Co-ordination Chemistry

Research Group. We thank Ms. Lise Penzien, The Technical University of Denmark, for measuring the electronic spectra.

(Received, 17th May 1977; Com. 478.)

 $^{1}C_{1}$ -cis(N)-K[Co(Gly)₂CO₃]·H₂O was prepared by the method of M. Shibata, H. Nishikawa, and Y. Nishida, *Inorg. Chem.*, 1968, 7, 9; trans(N)-Na[Co(β -Ala)₂CO₃] was prepared by the method of K. Marković, B.Sc. Thesis, University of Beograd, 1972; this procedure is analogous to that described by Shibata et al.

 ² For a discussion of ion exclusion see, for example, 'Dowex Ion Exchange,' The Dow Chemical Company, 1964, p. 30.
³ F. Basolo, C. J. Ballhausen, and J. Bjerrum, Acta Chem. Scand., 1955, 9, 810; Y. Shimura and R. Tsuchida, Bull. Chem. Soc. Japan, No. 2010, 1993, 1994, 1995, 2010, 2 1956, 29, 311.

⁴ M. B. Čelap, S. R. Niketić, T. J. Janjić, and V. N. Nikolić, Inorg. Chem., 1967, 6, 2063.